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Abstract—A method to compute the differentiation error in
presence of bounded measurement noise for the family of Gener-
alized Super-Twisting differentiators is presented. The proposed
method allows choosing the optimal gain of each differentiator
in the family providing the smallest ultimate bound of the
differentiation error. In particular, an heuristic formula for
the optimal gain of the pure Super-Twisting differentiator is
presented. A numerical analysis comparing the performance of
linear High-Gain and Super-Twisting differentiators is presented.

Index Terms—sliding-mode; differentiator; noise; optimal.

I. INTRODUCTION

The Super-Twisting (ST) algorithm has been successfully
used in numerous applications. In particular, it has been widely
used as a differentiator [1] in many contexts, see e.g. [2], [3],
[4], [5] and the special issues [6] and [7].

The ST differentiator has two principal properties: exactness
and robustness [1]. In the absence of noise, the ST differentia-
tor is exact on the class of signals with bounded second deriva-
tive. No continuous differentiator can be exact on this class
of signals. The second property is its robustness with respect
to measurement noise. In the presence of measurement noise
uniformly bounded by δ, its precision can be proportional to√
Lδ, where L is the uniform bound of the second derivative

of the signal. In addition, it was also shown that this is the
best order of precision for any differentiator that is exact on
this class of signals [1].

However, the analysis of the effect of measurement noise
on the ST differentiator has only been qualitatively made,
i.e., in terms of order of magnitude [1]. This means that
the proportionality constant in its precision may be large or
small depending on the selected gain. Moreover, there is no
method to select the gain of the ST differentiator to improve
its precision by minimizing this proportionality constant.

Our main contribution in this paper is to present a quan-
titative (and tight) analysis of the precision for the class of
Generalized ST (GST) differentiators [8], [9]. The family of
GST differentiators includes the ST and linear differentiators
as particular cases. For a given pair (L, δ), the analysis also
allows computing the optimal gain for each differentiator in the
class that minimizes the differentiation error. In particular, an
heuristic formula for the optimal gain of the ST differentiator
is given. Surprisingly, it turns out that the optimal gain of the
ST differentiator does not depend on the noise amplitude.

The remainder of this paper is organized as follows. Section
II formally introduces the Problem Statement. Section III
presents the main results of the paper: a method to compute
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the differentiation error in the presence of measurement noise.
Section IV uses this method to compute the differentiation
error for the pure ST differentiator. The proofs of all the
Theorems of sections III and IV are collected in the Appendix.
Section V presents the numerical results obtained from using
the proposed method for linear, ST and GST differentiators.
This section also presents an example where the pure ST
differentiator outperforms the linear and GST differentiators
and an heuristic formula to compute the optimal gain of the ST
differentiator. Finally, some conclusions are given in Section
VI.

II. PROBLEM STATEMENT

The problem consists in estimating the first derivative of a
signal σ(t) based on its noisy measurement y(t) = σ(t)+η(t).
Only two assumption will be made:
(i) the second derivative of the base signal σ(·) is uniformly

bounded by a known constant L;
(ii) the measurement noise η(·) is uniformly bounded by δ.

Setting x1 := σ and x2 := σ̇, the problem is transformed
into the design of an observer for the system

ẋ1 = x2, ẋ2 = −ρ, y = x1 + η, (1)

based on the measured output y. In system (1), ρ := −σ̈ is a
perturbation.

Let us consider the so-called Generalized ST differentiators
[8], [9] in the following particular form

˙̂x1 = −α1

ε
φ1(x̂1 − y) + x̂2, ˙̂x2 = −α2

ε2
φ2(x̂1 − y),

where αi > 0 are fixed1 constants and ε > 0 sets the gain of
the differentiator. The functions φ1 and φ2 are defined by

φ1(x) = µ1|x|
1
2 sign(x) + µ2x,

φ2(x) = 0.5µ2
1 sign(x) + 1.5µ1µ2|x|

1
2 sign(x) + µ2

2x,

with µ1, µ2 ≥ 0. The GST is reduced to a linear High-Gain
differentiator when µ1 = 0 and to a pure ST differentiator
when µ2 = 0.

By introducing the differentiation error x̃ = x̂ − x and
defining

w1 := φ1(x̃1)− φ1(x̃1 − η), w2 := φ2(x̃1)− φ2(x̃1 − η),

the dynamics of the differentiator error are given by

˙̃x1 = −α1

ε
φ1(x̃1)+x̃2+

α1

ε
w1, ˙̃x2 = −α2

ε2
φ2(x̃1)+

α2

ε2
w2+ρ.

(2)
The problem consists in obtaining a tight estimate of the

ultimate bound for the differentiation error x̃2 in terms of the

1A popular choice is α1 = 1.5, α2 = 1.1, originally given in [1].
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µ1x
1/2 + µ2x = P1LΓ(x)ε2 +Q12Γ(x)

[
0.5µ2

1∆0(x) + 1.5µ1µ2∆1(x) + µ2
2δ
]

+Q11 (µ1∆1(x) + µ2δ) . (3)

Ξ(x, δ) = Q12Γ(x)
P2

P1

[
0.5µ2

1∆0(x) + 1.5µ1µ2∆1(x) + µ2
2δ
]

+Q21 (µ1∆1(x) + µ2δ) . (4)

parameters of the differentiator and the bounds of the distur-
bances. In other words, the maximum asymptotic error that
the differentiator will make due to the bounded disturbances.
Once this expression is derived, the gain of the differentiator
can be selected to improve its performance.

Remark about the Figures. In all figures and examples that
follow, the parameters are set as α1 = 1.5, α2 = 1.1, L = 1,
δ = 0.01, unless otherwise stated.

III. MAIN RESULT

This paper extends the method of [10], valid strictly for
linear time invariant systems, to compute the ultimate bound
for the general nonlinear and discontinuous system (2).

Theorem 1: The ultimate bound for x̃1, denoted as x̃1,ss,
is the largest solution of equation (3) in the unknown x. Once
this value is computed, the ultimate bound for x̃2 is given by

x̃2,ss = P2LΓ(x)ε+
1

ε
Ξ(x, δ), (5)

with Ξ(x, δ) defined as in expression (4).
Proof: See Appendix A.

In Theorem 1, the functions ∆i and Γ are given by

∆0(x) := 1− sign(|x| − δ), Γ(x) :=
2|x| 12

µ1 + 2µ2|x|
1
2

,

∆1(x) := |x| 12 − ||x| − δ| 12 sign(|x| − δ),

and note that, in fact, ∆i is a function of x and δ. The constants
Pi, Qij , i, j = 1, 2, are given2 by

Pi =

∫ ∞
0

|{eAtB}i|dt, Qij =

∫ ∞
0

|{eAtDj}i|dt,

where the notation {·}k denotes the k-th element of a two-
dimensional vector. The matrices B, D1 and D2 are defined
as

B =

[
0
1

]
, D1 =

[
α1

0

]
, D2 =

[
0
α2

]
.

The ultimate bound (5) has two components, one depending
on the perturbation L and the other depending on the noise
δ. As the differentiator gain 1/ε increases the term due to
the perturbation decreases but the noise term increases, and
viceversa. This indicates a trade-off between the closeness
to the true derivative in the absence of noise and the noise
amplification in the presence of noise. This trade-off will
be quantified in this paper for the GST differentiator (2),
extending the quantitative results of [10] for the linear HG
differentiator and the qualitative results of [1] for the ST
differentiator. Note that the exact behavior of the ultimate
bound x̃2,ss given by (5) is more complicate than it is apparent
from the expression, since the value of x also depend on ε, L
and δ. However, this qualitative trade-off is valid in general.

2For α1 = 1.5 and α2 = 1.1 they can be numerically evaluated using [11]
giving P1 = 0.9852, Q11 = 1.3501, Q12 = 1.0838, P2 = 1.5399, Q21 =
1.6257, Q22 = 1.6939.

Geometrically, the solutions of (3) are the intersection points
of the graphs of the two functions on the left and on the right of
the equation (3), see Figure 1. In general, it is difficult to obtain
analytical expressions for the maximal solution. However, it
can be analytically solved at least in the pure ST case, as
shown in the following section.
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Fig. 1. Finding the solution of equation (3) of Theorem 1 is equivalent
to find the intersection of two graphs. This gives the ultimate bound
for x̃1. The solid line shows the graph of the left-hand side of (3).
The dashed line shows the graph of the right-hand side of (3) for
ε = 0; the dotted lines shows the graph of the same function for
other values of ε > 0. The parameters µ1 = µ2 = 0.5 were used.

IV. ANALYSIS OF THE DIFFERENTIATION ERROR FOR THE
ST DIFFERENTIATOR

When µ2 = 0, the equation (3) of Theorem 1 is reduced to(
µ1 −

2ε2LP1

µ1

)
x1/2 = Q11µ1∆1(x) +

1

2
µ2
1Q12Γ(x)∆0(x),

and the differentiation error to

x̃2,ss = 2P2LΓ(x)ε+
µ1

ε

(
P2Q12µ1

2P1
Γ(x)∆0(x) +Q21∆1(x)

)
.

Theorem 2: The following statements are true:
a) If the gain satisfies ε2 ≤ µ2

1/(2LP1), there exists a finite
ultimate bound for x̃2. Otherwise, the ultimate bound is
“infinite”;

b) the ultimate bound for x̃1 is never smaller than δ;
c) x̃2,ss →∞ either as ε→ 0, or as ε→∞.

Proof: See Appendix B.
This theorem shows that there exists a minimal value for the

gain that guarantees that the ST differentiator is stable. If the
gain is smaller than this value, the ST differentiator becomes
unstable. Moreover, the theorem shows that it is impossible to
make the ultimate bound for x̃1 smaller than the amplitude of
the noise, despite the selected gains. Finally, it shows that the
differentiation error tends to infinite when the gain tends to
zero or infinity. With this last observation, it is also possible
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to conclude that there exists an optimal gain (or several of
them) that provides the minimum differentiation error.

Theorem 3: When the gain is selected according to the
amplitude of the perturbation using

1

ε2
=
P1θ

µ2
1

L, θ > 2,

where θ is a new parameter, then the precision of the differ-
entiator is of O(

√
δL). More precisely,

x̃2,ss ≤
(

2P2√
P1θ

√
c+

√
2P1θQ21

)√
δL

with c = c(θ) as displayed in formula (6).
Proof: See Appendix B.

The theorem shows that when the gain stabilizes and is
selected proportional to 1/

√
L, the precision is proportional to√

δL. Both qualitative conclusions have been already obtained
by Levant, see Theorem 2 of [1]. Theorem 3 improves those
results in two aspects. Firstly, it provides the explicit value for
the proportionality constants. Secondly, it does not require the
assumption of “small enough noise”.

V. NUMERICAL EXAMPLES

Figure 2 presents the differentiation error as a function of
the gain for the linear, ST and GST differentiators. The GST
case is solved by numerically finding the solution of equation
(3) using the fzero MATLAB function.
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Fig. 2. Ultimate bound of the differentiation error as a function of
ε, for L = 1 and δ = 0.01. Solid: linear case µ1 = 0, µ2 = 1;
dashed: pure ST case µ1 = 1, µ2 = 0; dotted: two experiments
µ1 = 0.8, µ2 = 0.2 and µ1 = 0.5, µ2 = 0.5 (with circles).

The graph shows that the performance of the GST gets
closer to the linear one as the gain of the ST part µ1 tends to
zero. Analogously, when µ2 → 0 its performance gets closer
to the ST one. In general, when µ1 > 0 and µ2 > 0, the
performance of the GST is “between” the linear and ST in
such a way that does not provide a smaller differentiation error
than a pure ST differentiator.

The optimal gain ε∗ for each differentiator can be found
simply as the minimum of each curve. Note also that the
graphs shows that the inclusion of linear terms to the ST
differentiator avoids instability if the gain is not large enough.
This is important when the actual value of L is not exactly
known, as usual in practice.

A. Heuristic formula for the optimal gain of the ST differen-
tiator.

Figure 2 also allows computing the optimal gain for a GST
differentiator that provides the smallest ultimate bound of the
differentiation error. For a given pair (L, δ), the optimal gain
can be computed by finding the ε at the minimum of the graph
of x̃2,ss.

Moreover, fixing the noise amplitude δ, one can obtain a
graph of the optimal ε∗ as a function of the perturbation
amplitude L, as shown in Figure 3. The behavior of this graph
can be described by the expression

ε∗(L) =
m(δ)√
L

+ b(δ), (7)

in congruence with the selection originally made by Levant
in [1]. Equation (7) can be adjusted using only two values of
the optimal gain ε∗(L1), ε∗(L2) for two distinct values of the
perturbation amplitude L1 and L2. This yields

m =
ε∗(L2)− ε∗(L1)

1/
√
L2 − 1/

√
L1

, b = ε∗(L1)− m√
L1

.

Several experiments have shown that formula (7) is correct
in the sense that it can predict the correct values once it is
adjusted. More surprising is the fact that this graph does not
change when δ is changed! This means that m and b are indeed
independent of δ, and need to be computed only once.

We have made this experiment obtaining the the graph
shown in Figure 3 and the values3:

m = 0.4997 ≈ 0.5, b = 5.0494× 10−07 ≈ 0, (8)

which means that the optimal gain 1/ε∗ of the ST differentiator
is simply 2

√
L, for all the amplitudes of noise.
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Fig. 3. Optimal ε of the pure ST differentiator as a function of L.
The circles are measurement for δ = 0.01, the cruxes for δ = 0.1,
the plus symbols for δ = 0.001 and the triangles for δ = 0.05. The
interpolation using formula (7) adjusted using constants (8) is shown
in solid line.

B. The performance of linear and ST differentiators.

In Figure 4 the graph of the differentiation error as a
function of the gain is presented in two scenarios: when the
perturbation is larger than the noise (L > δ) and when it is
smaller than the noise (L < δ).

3These are the optimal values for α1 = 1.5, α2 = 1.1.
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c(θ) =

 1 if Q11 < 1 and ε2 ≤ µ2
1

2LP1
(1−Q11)

Q2
11

Q2
11−( 2

θ+Q11−1)
2 otherwise.

(6)
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Fig. 4. Ultimate bound of the differentiation error as a function of
ε. Solid: linear case µ1 = 0, µ2 = 1; dashed: pure ST case µ1 =
1, µ2 = 0. Left: parameters L = 1, δ = 0.01; right: parameters
L = 0.1, δ = 1.

In this experiment, a ST differentiator provides a smaller
error than a linear one in the two scenarios. This means that
despite that the perturbation is small compared to the noise,
one can select the gain of the ST small enough to obtain a
smaller error than a linear differentiator.

Another important information one can recover from this
experiment is the explicit value for the proportionality constant
in the precision of a ST differentiator. It can be recovered by
dividing the minimum value of the graph by

√
Lδ. This way,

the proportionality constant for the ST precision is found to
be 3.535. One can compare this value with 4.522, obtained
for the precision of a linear differentiator.

VI. CONCLUSIONS

A method to compute the ultimate bound of the differentia-
tor error for the family of GST differentiators was presented.
The method allows obtaining the optimal gain of any GST
differentiator and to compare the performance between them.
In particular, we compared the minimum ultimate bound for
the linear, ST and GST differentiators.

The pure ST differentiator can provide the minimum dif-
ferentiation error. However, it is unstable when its gain is not
large enough to overcome the perturbation. This can be allevi-
ated by including small linear terms at the price of a slightly
larger minimum error. Moreover, we heuristically obtained the
optimal gain of the ST differentiator that, surprisingly, does not
depend on the noise amplitude.
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APPENDIX

A. PROOF OF THE MAIN RESULT

The first step towards proving Theorem 1 is to transform the
system into a more convenient form, as shown in the following
result.

Theorem 4: The trajectory ζ(·) of every solution of the
system

dζ

dτ
=

[
−α1 1
−α2 0

]
ζ+

[
0
1

]
ε2ρ̃+

[
α1 0
0 α2

]
w̃, ζ(0) = ζ0,

(9)
with ρ̃ = ρ/φ′1 and w̃ = (w1, w2/φ

′
1)T is transformed into a

trajectory x̃(·) that is a solution to (2) using the formal change
of coordinates

(x̃1, x̃2) = φ−1(ζ) =

(
φ−11 (ζ1),

1

ε
ζ2

)
.

Proof: Here we follow Filippov’s ideas presented in [12,
Chapter 2, pp. 99]. Let ζ(τ) be a solution of (9), therefore, it
is an absoslutely continuous (AC) function. Set

t(τ) = ε

∫ τ

0

1

φ′1(x̃1(s))
ds,

where φ′1(x̃1) = 0.5µ1|x̃1|−
1
2 + µ2.

Then the derivative t′(τ) = 2|x̃1|1/2/(µ1 + 2µ2|x̃1|1/2)
and assume, for the moment, that it is strictly positive, i.e.,
x̃1(t) 6= 0. Therefore, there exists an inverse function τ(t),
where τ ′(t) = (1/ε)φ′1. The function ζ∗(t) = ζ(τ(t)) is AC,
[12, Chapter 2, pp. 102], and

dζ∗

dt
=
dζ

dτ

dτ

dt
=
dζ

dτ

1

ε
φ′1

almost everywhere. Thus, the trajectory of any solution of

dζ

dt
=

1

ε
φ′1

([
−α1 1
−α2 0

]
ζ +

[
0
1

]
ε2ρ̃+

[
α1 0
0 α2

]
w̃

)
,

(10)
is also the trajectory of some solution of (9), c.f., Theorem 3
of [12, Chapter 2].

Moreover, the coordinate transformation φ−1 : ζ 7→ x̃ is
one-to-one and class C1. The original differentiation error (2)
is obtained by using this expression as a formal change of
coordinates in system (10). Then, according to Theorem 1 of
[12, Chapter 2], each solution of (10) is transformed into a
solution of system (2).

Let us now consider what happens when t′(τ) = 0. The
function 2|x̃1(t)|1/2/(µ1+2µ2|x̃1(t)|1/2) vanishes only in the
points where the trajectory x̃1(t) is zero. When such points
are isolated, the trajectory can be divided by such points into
several (sometimes infinitely many) trajectories of the equation
(10).

When the trajectory x̃1(s) ≡ 0 for s ∈ [a, b], the time t
“stops”. However, we will show that in such situation the
trajectories of ζ and x̃ in the phase space also stop. The
condition x̃1(s) ≡ 0 for s ∈ [a, b], implies that ζ1 ≡ 0 on the
same time interval. Using this fact on the system (9) yields

ζ2 = −α1w1, ζ2 = constant,

which means that the trajectory of (9) viewed in the phase
space (ζ1, ζ2) stops. An analogous computation shows that the
same occurs with the trajectory x̃(t) of (2) when viewed in
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the phase space (x̃1, x̃2). Therefore, the relation x̃ = φ−1(ζ)
keeps being valid.

Due to lack of space, we state the following proposition
without proof.

Proposition 1: The transformed disturbances satisfy

|w̃1| ≤ µ1∆1(x̃1) + µ2δ, |ρ̃| ≤ Γ(x̃1)L,

|w̃2| ≤ Γ(x1)

[
1

2
µ2
1∆0(x̃1) +

3

2
µ1µ2∆1(x̃1) + µ2

2δ

]
,

(11)

where the functions Γ and ∆i were introduced after the
statement of Theorem 1.

Using the transformed system of Theorem 4 and the uniform
bounds for the transformed disturbances |ρ̃(t)| ≤ ρ0, |w̃1(t)| ≤
w0

1 , |w̃2(t)| ≤ w0
2 , the ultimate bound for x̃1 can be computed

using [10, Lemma 1] as

µ1x̃
1/2
1,ss + µ2x̃1,ss = P1(ε2ρ0 + α2w

0
2) +Q11w

0
1

and also for for x̃2

x̃2,ss =
1

ε
P2(ε2ρ0 + α2w

0
2) +Q21w

0
1.

A1. Proof of Theorem 1

In principle, [10, Lemma 1] could be directly used to
compute the ultimate bound of the differentiation error based
only on the uniform bounds of the disturbances. However, this
would result in a very crude approximation of it, since the
changes of the disturbances according to the state are ignored.
To consider the dependance of the disturbances on the state,
the following recursive algorithm is proposed:

[Step 0:] initialize the disturbances at its maximum, i.e., set

ρ̃0 =
L

µ2
, w̃0

1 = µ1

√
2δ + µ2δ,

w̃0
2 =

1

µ2
[µ2

1 + 1.5µ1µ2

√
2δ + µ2

2δ]

[Step 1:] compute the corresponding ultimate bound for x̃1
(here denoted x0) as the unique solution to

µ1x
1/2
0 + µ2x0 = P1ε

2ρ̃0 +Q11w̃
0
1 +Q12w̃

0
2

[Step 2:] update the bounds of the disturbances using the
obtained value of the ultimate bound

ρ̃1 = LΓ(x0), w̃1
1 = µ1∆1(x0) + µ2δ,

w̃1
2 = Γ(x0)

[
1

2
µ2
1∆0(x0) +

3

2
µ1µ2∆1(x0) + µ2

2δ

]
[Step 3:] go back to Step 1 and repeat!

The algorithm defines two recursive maps:

v 7−→ x using µ1x
1/2 + µ2x = v

x 7−→ v using v(x) = P1Lε
2Γ(x) +Q11 [µ1∆1(x) + µ2δ] +

+Q12Γ(x)

[
1

2
µ2
1∆0(x) +

3

2
µ1µ2∆1(x) + µ2

2δ

]
We are now ready for the proof of Theorem 1:

Proof of Theorem 1: The argument is by induction.
The first step of the algorithm obviously corresponds to
an upper bound of the ultimate bound of the error. If at
step n the ultimate bound is xn and the disturbances are
(ρ̃n, w̃n1 , w̃

n
2 ), then the disturbances are indeed bounded by

(ρ̃n+1, w̃n+1
1 , w̃n+1

2 ) so the ultimate bound is in fact xn+1.

This shows that xn, n ≥ 0 are upper-bounds for the ultimate
bound of x̃1. Then the limit of the algorithm (fixed point) is
also an upper bound for the ultimate bound of x̃1.

Once the ultimate bound for x̃1 has been computed, the
ultimate bound for x̃2 can be found by simply computing

x̃2,ss =
1

ε
ζ2,ss =

1

ε

[
P2

P1
(µ1x

∗1/2 + µ2x
∗)+

+

(
Q21 −

P2

P1
Q11

)
(µ1∆1(x∗) + µ2δ)

]
and by replacing µ1(x∗)1/2 + µ2x

∗ = v yields the claim of
the Theorem.

B. PROOFS OF THEOREMS 2 AND 3
When µ2 = 0, the function Γ(x) is reduced to Γ(x) =

(2/µ1)x1/2, and the intersection can be found by solving

µ1x
1/2 = ε2LP1

2

µ1
x1/2 +Q11µ1∆1(x) +

1

2
µ2
1Q12Γ∆0(x),

or, equivalently

v0(x) :=

(
µ1 −

2ε2LP1

µ1

)
x1/2

= Q11µ1∆1(x) +
1

2
µ2
1Q12Γ∆0(x) := v1(x).

Proof of Theorem 2:
a) Otherwise, v0(x) < 0 and v1(x) ≥ 0, so there can not

be an intersection. As ε2 → µ2
1/(2LP1), v0(x)→ 0 uni-

formly, and the solution (intersection) grows, see Figure
5. When ε2 = µ2

1/(2LP1), v0(x) ≡ 0 and the only inter-
section (solution) is at infinity. When ε2 > µ2

1/(2LP1)
there is no solution and this should be interpreted as an
infinite ultimate bound. In fact, this last conclusion has
been proved using Lyapunov techniques: if the gain is
not large enough, the differentiation error is unstable, c.f.
[9].

b) The gain should be large enough to stabilize, i.e, ε2 ≤
µ2
1/(2LP1). We analyze two cases:
i) Q11 < 1. First note that v1(δ+) = Q11µ1

√
δ and

that
v0(δ) = µ1

√
δ − 2ε2LP1

µ1

√
δ

then if Q11 < 1 we have that v1(δ+) < v0(δ) if

ε2 ≤ µ2
1

2LP1
(1−Q11)

and for all those cases the intersection is at x = δ.
When ε2 >

µ2
1

2LP1
(1 − Q11), but large enough to

stabilize, then the intersection is with the second
branch and is found by solving

µ1x
1/2 =

(
2LP1

µ1
ε2 +Q11µ1

)
x1/2−Q1µ1(x−δ)1/2

that yields

x =
Q2

11

Q2
11 −

(
2LP1

µ2
1
ε2 +Q11 − 1

)2 δ. (12)

Note that

x→ Q2
11

2Q11 − 1
δ > δ as ε→ 0,
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so the ultimate bound for x̃1 cannot be smaller that
δ, as claimed.

ii) Q11 ≥ 1. In this case, v1(δ+) > v0(δ) so the
intersection is only with the second branch of v1(x),
see Figure 5. Therefore, the intersection always is at
x obtained in point (i), equation (12), and it cannot
be smaller than δ.

c) For any ε > 0, point (b) shows that x ≥ δ. In particular,
x is larger than a positive value when ε→ 0. Therefore,
Ξ(x, δ) tends to also to a positive value when ε → 0.
Noticing that x̃2,ss ≥ (1/ε)Ξ(x, δ), one obtain that
x̃2,ss →∞ as ε→ 0.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x
1

Fig. 5. Pure Super-Twisting case. Solid v1(x) for µ1 = 1 and δ =
0.01. The dashed line is v0(x) for ε = 0, the dotted line is v0(x) as
ε increases. In all the cases L = 1.

Proof of Theorem 3: If 1
ε2 = P1θ

µ2
1
L with θ > 2, then there

is an intersection since the following condition is satisfied

ε2 ≤ µ2
1

2LP1
⇔ 1

θ
<

1

2

Therefore, the intersection is given by x = c̄δ, with c̄ = c̄(θ)
defined in equation (6).

Substituting the value for ε and using ∆1(x) ≤
√

2δ in the
expression for x̃2,ss yields

x̃2,ss ≤
(

2P2√
P1θ

√
c+

√
2P1θQ21

)√
δL

as claimed.
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